题目内容
(本小题满分14分)
已知函数
.
(1)求函数
的最小值;
(2)证明:对任意
恒成立;
(3)对于函数
图象上的不同两点
,如果在函数
图象上存在点
(其中
)使得点
处的切线
,则称直线
存在“伴侣切线”.特别地,当
时,又称直线
存在 “中值伴侣切线”.试问:当
时,对于函数
图象上不同两点
、
,直线
是否存在“中值伴侣切线”?证明你的结论.
已知函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224484810.png)
(1)求函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224500562.png)
(2)证明:对任意
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152245151127.png)
(3)对于函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224546463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152245621023.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224546463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224609723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224624637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224640399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224656509.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224687396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224702632.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224687396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224905378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224921447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225046300.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225061309.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224687396.png)
解:(1)
;(2)见解析;(3)函数f(x)不存在“中值伴侣切线”
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225108772.png)
第一问中
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152251551411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152252951303.png)
第二问![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152253111084.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225404673.png)
令![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225436935.png)
,
结合导数来判定。
第三问中,当
时,
,
,假设函数
存在“中值伴侣切线”.
设
,
是曲线
上的不同两点,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225748524.png)
则
,
. 故直线AB的斜率:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152259502180.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225982999.png)
曲线在点
处的切线斜率:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226028625.png)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226060730.png)
依题意可得。
解:(1)
…………1分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152261531466.png)
……………………………………2分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152263092706.png)
……………………………4分
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152253111084.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225404673.png)
令![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225436935.png)
,………………6分
因为
,显然
,所以
在
上递增,
显然有
恒成立.(当且仅当x=1时等号成立),即证. ………8分
(3)当
时,
,
,假设函数
存在“中值伴侣切线”.
设
,
是曲线
上的不同两点,且![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225748524.png)
则
,
. 故直线AB的斜率:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152271522078.png)
…………………………………………………………10分
曲线在点
处的切线斜率:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226028625.png)
=
…………………………………………11分
依题意得:![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227339993.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227354742.png)
化简可得:
, 即
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227479708.png)
. …………12分
设
(
),上式化为
,由(2)知
时,
恒成立.
所以在
内不存在t,使得
成立.
综上所述,假设不成立.所以,函数f(x)不存在“中值伴侣切线” ………………14分
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152251392167.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152251551411.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152252951303.png)
第二问
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152253111084.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225404673.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225436935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152255601230.png)
结合导数来判定。
第三问中,当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224905378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225592848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225623716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224921447.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225654616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225685644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224500562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225748524.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225779833.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225810844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152259502180.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225982999.png)
曲线在点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224609723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226028625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226044748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226060730.png)
依题意可得。
解:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152260912174.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152261531466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152252951303.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152263092706.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152263401670.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152253111084.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225404673.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225436935.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152255601230.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226450358.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226465564.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226496442.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226512509.png)
显然有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226543707.png)
(3)当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224905378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225592848.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225623716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224921447.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225654616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225685644.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224500562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225748524.png)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225779833.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225810844.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232152271522078.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215225982999.png)
曲线在点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215224609723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226028625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226044748.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215226060730.png)
依题意得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227339993.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227354742.png)
化简可得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227386861.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227401505.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227479708.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227495901.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227526522.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227542356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227557777.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227542356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227588668.png)
所以在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227620543.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823215227744627.png)
综上所述,假设不成立.所以,函数f(x)不存在“中值伴侣切线” ………………14分
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目