ÌâÄ¿ÄÚÈÝ
ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²C1£º£¨x-1£©2+y2=16£¬Ô²C2£º£¨x+1£©2+y2=1£¬µãSΪԲC1ÉϵÄÒ»¸ö¶¯µã£¬ÏÖ½«×ø±êÆ½ÃæÕÛµþ£¬Ê¹µÃÔ²ÐÄC2£¨-1£¬0£©Ç¡ÓëµãSÖØºÏ£¬ÕÛºÛÓëÖ±ÏßSC1½»ÓÚµãP£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£»
£¨2£©¹ý¶¯µãS×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM¡¢N£¬ÇóMNµÄ×îСֵ£»
£¨3£©Éè¹ýÔ²ÐÄC2£¨-1£¬0£©µÄÖ±Ïß½»Ô²C1ÓÚµãA¡¢B£¬ÒÔµãA¡¢B·Ö±ðΪÇеãµÄÁ½ÌõÇÐÏß½»ÓÚµãQ£¬ÇóÖ¤£ºµãQÔÚ¶¨Ö±ÏßÉÏ£®
£¨1£©Ç󶯵ãPµÄ¹ì¼£·½³Ì£»
£¨2£©¹ý¶¯µãS×÷Ô²C2µÄÁ½ÌõÇÐÏߣ¬Çеã·Ö±ðΪM¡¢N£¬ÇóMNµÄ×îСֵ£»
£¨3£©Éè¹ýÔ²ÐÄC2£¨-1£¬0£©µÄÖ±Ïß½»Ô²C1ÓÚµãA¡¢B£¬ÒÔµãA¡¢B·Ö±ðΪÇеãµÄÁ½ÌõÇÐÏß½»ÓÚµãQ£¬ÇóÖ¤£ºµãQÔÚ¶¨Ö±ÏßÉÏ£®
·ÖÎö£º£¨1£©ÓÉÌâÒâµÃ|PC1|+|PC2|=|PC1|+|PS|=4£¾|C1C2|£¬¹ÊPµãµÄ¹ì¼£ÊÇÒÔC1¡¢C2Ϊ½¹µã£¬4Ϊ³¤Ö᳤µÄÍÖÔ²£¬ÓÉ´Ë¿ÉÇóPµãµÄ¹ì¼£·½³Ì£»
£¨2£©·¨1£¨¼¸ºÎ·¨£© ¸ù¾ÝËıßÐÎSMC2NµÄÃæ»ý=
SC2•MN=
SM•MC2¡Á2=SM£¬¿ÉµÃMN=
=2cos¡ÏMSC2=2
=2
£¬´Ó¶øSC2È¡µÃ×îСֵʱ£¬MNÈ¡µÃ×îСֵ£»
·¨2£¨´úÊý·¨£© ÉèS£¨x0£¬y0£©£¬Éè³öÒÔSC2Ϊֱ¾¶µÄÔ²µÄ±ê×¼·½³Ì£¬¸Ã·½³ÌÓëÔ²C2µÄ·½³ÌÏà¼õµÃ£¬Çó³öÔ²ÐÄC2µ½Ö±ÏßMNµÄ¾àÀ룬d=
£¬¸ù¾Ýx0¡Ê[-3£¬5]£¬ÇóµÃdmax=
£¬´Ó¶ø¿ÉÇóÇóMNµÄ×îСֵ£»
£¨3£©ÉèQ£¨m£¬n£©£¬Çó³ö¡°ÇеãÏÒ¡±ABµÄ·½³Ì£¬½«µã£¨-1£¬0£©´úÈ룬¼´¿ÉµÃµ½½áÂÛ£®
£¨2£©·¨1£¨¼¸ºÎ·¨£© ¸ù¾ÝËıßÐÎSMC2NµÄÃæ»ý=
| 1 |
| 2 |
| 1 |
| 2 |
| 2SM |
| SC2 |
| 1-sin2¡ÏMSC2 |
1-
|
·¨2£¨´úÊý·¨£© ÉèS£¨x0£¬y0£©£¬Éè³öÒÔSC2Ϊֱ¾¶µÄÔ²µÄ±ê×¼·½³Ì£¬¸Ã·½³ÌÓëÔ²C2µÄ·½³ÌÏà¼õµÃ£¬Çó³öÔ²ÐÄC2µ½Ö±ÏßMNµÄ¾àÀ룬d=
| 1 | ||
|
| 1 |
| 2 |
£¨3£©ÉèQ£¨m£¬n£©£¬Çó³ö¡°ÇеãÏÒ¡±ABµÄ·½³Ì£¬½«µã£¨-1£¬0£©´úÈ룬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâµÃ|PC1|+|PC2|=|PC1|+|PS|=4£¾|C1C2|£¬¹ÊPµãµÄ¹ì¼£ÊÇÒÔC1¡¢C2Ϊ½¹µã£¬4Ϊ³¤Ö᳤µÄÍÖÔ²£¬
Ôò2a=4£¬c=1£¬ËùÒÔa=2£¬b=
£¬¹ÊPµãµÄ¹ì¼£·½³ÌÊÇ
+
=1£®£¨5·Ö£©
£¨2£©·¨1£¨¼¸ºÎ·¨£© ËıßÐÎSMC2NµÄÃæ»ý=
SC2•MN=
SM•MC2¡Á2=SM£¬
ËùÒÔMN=
=2cos¡ÏMSC2=2
=2
£¬£¨9·Ö£©
´Ó¶øSC2È¡µÃ×îСֵʱ£¬MNÈ¡µÃ×îСֵ£¬ÏÔÈ»µ±S£¨-3£¬0£©Ê±£¬SC2È¡µÃ×îСֵ2£¬
ËùÒÔMNmin=2
=
£®£¨12·Ö£©
·¨2£¨´úÊý·¨£© ÉèS£¨x0£¬y0£©£¬ÔòÒÔSC2Ϊֱ¾¶µÄÔ²µÄ±ê×¼·½³ÌΪ(x-
)2+(y-
)2=(
)2+(
)2£¬
¸Ã·½³ÌÓëÔ²C2µÄ·½³ÌÏà¼õµÃ£¬£¨x0+1£©x+y0y+x0=0£¬£¨8·Ö£©
ÔòÔ²ÐÄC2µ½Ö±ÏßMNµÄ¾àÀëd=
=
£¬
ÒòΪ(x0-1)2+y02=16£¬ËùÒÔx02+y02=15+2x0£¬´Ó¶ød=
£¬x0¡Ê[-3£¬5]£¬
¹Êµ±x0=-3ʱdmax=
£¬
ÒòΪMN=2
£¬ËùÒÔMNmin=2
=
£®£¨12·Ö£©
£¨3£©ÉèQ£¨m£¬n£©£¬Ôò¡°ÇеãÏÒ¡±ABµÄ·½³ÌΪ£¨m-1£©£¨x-1£©+ny=16£¬
½«µã£¨-1£¬0£©´úÈëÉÏʽµÃm=-7£¬n¡ÊR£¬¹ÊµãQÔÚ¶¨Ö±Ïßx=-7ÉÏ£®£¨16·Ö£©
Ôò2a=4£¬c=1£¬ËùÒÔa=2£¬b=
| 3 |
| x2 |
| 4 |
| y2 |
| 3 |
£¨2£©·¨1£¨¼¸ºÎ·¨£© ËıßÐÎSMC2NµÄÃæ»ý=
| 1 |
| 2 |
| 1 |
| 2 |
ËùÒÔMN=
| 2SM |
| SC2 |
| 1-sin2¡ÏMSC2 |
1-
|
´Ó¶øSC2È¡µÃ×îСֵʱ£¬MNÈ¡µÃ×îСֵ£¬ÏÔÈ»µ±S£¨-3£¬0£©Ê±£¬SC2È¡µÃ×îСֵ2£¬
ËùÒÔMNmin=2
1-
|
| 3 |
·¨2£¨´úÊý·¨£© ÉèS£¨x0£¬y0£©£¬ÔòÒÔSC2Ϊֱ¾¶µÄÔ²µÄ±ê×¼·½³ÌΪ(x-
| x0-1 |
| 2 |
| y0 |
| 2 |
| x0+1 |
| 2 |
| y0 |
| 2 |
¸Ã·½³ÌÓëÔ²C2µÄ·½³ÌÏà¼õµÃ£¬£¨x0+1£©x+y0y+x0=0£¬£¨8·Ö£©
ÔòÔ²ÐÄC2µ½Ö±ÏßMNµÄ¾àÀëd=
| 1 | ||
|
| 1 | ||
|
ÒòΪ(x0-1)2+y02=16£¬ËùÒÔx02+y02=15+2x0£¬´Ó¶ød=
| 1 | ||
|
¹Êµ±x0=-3ʱdmax=
| 1 |
| 2 |
ÒòΪMN=2
| 1-d2 |
1-(
|
| 3 |
£¨3£©ÉèQ£¨m£¬n£©£¬Ôò¡°ÇеãÏÒ¡±ABµÄ·½³ÌΪ£¨m-1£©£¨x-1£©+ny=16£¬
½«µã£¨-1£¬0£©´úÈëÉÏʽµÃm=-7£¬n¡ÊR£¬¹ÊµãQÔÚ¶¨Ö±Ïßx=-7ÉÏ£®£¨16·Ö£©
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÖ±Ïß¡¢Ô²¡¢ÍÖÔ²»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½â¡¢×ÛºÏÓ¦ÓÃÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿