题目内容

【题目】在直角坐标系中,已知以点为圆心的及其上一点.

1)设圆轴相切,与圆外切,且圆心在直线上,求圆的标准方程;

2)设平行于的直线与圆相交于两点,且,求直线的方程.

【答案】1;(2

【解析】

1)由圆的方程求得圆心坐标和半径,依题意可设圆的方程为,由圆与圆外切可知圆心距等于两圆半径的和,由此列式可求得,即可得出圆的标准方程;

(2)求出所在直线的斜率,设直线的方程为,求出圆心到直线的距离,利用垂径定理列式求得,则直线方程即可求出.

1)因为圆

所以圆心的坐标为,半径.

根据题意,设圆的方程为.

又因为圆与圆外切,所以,解得

所以圆的标准方程为.

2)由题意可知,所以可设直线的方程为.

,所以圆心到直线的距离

,解得

所以直线的方程为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网