题目内容
13.[log2(log216)]•(2log36-log34)=4.分析 根据对数函数的性质和运算法则,进行计算即可.
解答 解:原式=[log2(log224)]•(log362-log34)
=[log24]•(log3$\frac{36}{4}$)
=log222•log332
=2×2
=4.
故答案为:4.
点评 本题考查了对数函数的性质与运算问题,是基础题目.
练习册系列答案
相关题目
1.圆心为(2,2)且过原点的圆的方程是( )
A. | (x-2)2+(y-2)2=8 | B. | (x+2)2+(y+2)2=8 | C. | (x-2)2+(y-2)2=16 | D. | (x-1)2+(y-2)2=16 |
17.某地最近十年粮食需求量逐年上升,下表是部分统计数据:
(Ⅰ)求出线性相关系数r,并进行相关性检验;
(Ⅱ)如果x,y线性相关,利用所给数据求x,y之间的回归直线方程$y=\hat bx+\hat a$;
(Ⅲ)利用(Ⅱ)中所求出的直线方程预测该地2015年的粮食需求量.
(参考公式:线性回归方程系数公式$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\hat a=\bar y-\hat b\bar x$,
线性相关系数公式$r=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sqrt{(\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2})(\sum_{i=1}^n{{y_i}^2-n{{\overline y}^2}})}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sqrt{(\sum_{i=1}^n{{{({x_i}-\overline x)}^2})(\sum_{i=1}^n{{{({y_i}-\overline y)}^2})}}}}}$,
相关性检验临界值表:
年份x | 2006 | 2008 | 2010 | 2012 | 2014 |
需求量y(万吨) | 240 | 255 | 260 | 265 | 280 |
(Ⅱ)如果x,y线性相关,利用所给数据求x,y之间的回归直线方程$y=\hat bx+\hat a$;
(Ⅲ)利用(Ⅱ)中所求出的直线方程预测该地2015年的粮食需求量.
(参考公式:线性回归方程系数公式$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\hat a=\bar y-\hat b\bar x$,
线性相关系数公式$r=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sqrt{(\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2})(\sum_{i=1}^n{{y_i}^2-n{{\overline y}^2}})}}}}$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sqrt{(\sum_{i=1}^n{{{({x_i}-\overline x)}^2})(\sum_{i=1}^n{{{({y_i}-\overline y)}^2})}}}}}$,
相关性检验临界值表:
P(K2≥k0) | 小概率 | |
0.05 | 0.01 | |
k0 | 0.878 | 0.959 |