题目内容
。
4
解析试题分析:= 7分考点:本题主要考查对数的运算法则及其性质。点评:简单题,注意运用积商幂的对数运算法则及换底公式。
已知二次函数 且关于的方程在上有两个不相等的实数根.⑴求的解析式.⑵若总有成立,求的最大值.
(本小题满分10分)已知关于x的方程x2+(m-3)x+m=0(1)若此方程有实数根,求实数m的取值范围.(2)若此方程的两实数根之差的绝对值小于,求实数m的取值范围.
(本小题满分12分) 某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产产品件数x(x∈N*)间的关系为P=,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%).(Ⅰ)将日利润y(元)表示成日产量x(件)的函数;(Ⅱ)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
(本小题满分15分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数)的图象,且点M到边OA距离为.(1)当时,求直路所在的直线方程;(2)当t为何值时,地块OABC在直路不含泳池那侧的面积取到最大,最大值是多少?
(本题满分16分)如图,开发商欲对边长为的正方形地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路(点分别在上),根据规划要求的周长为.(1)设,求证:;(2)欲使的面积最小,试确定点的位置.
已知二次函数y=f1(x)的图象以原点为顶点且过点(1,1),反比例函数y=f2(x)的图象与直线y=x的两个交点间距离为8,f(x)= f1(x)+ f2(x).(Ⅰ) 求函数f(x)的表达式;(Ⅱ) 证明:当a>3时,关于x的方程f(x)= f(a)有三个实数解.
(本小题满分6分)(1)计算(2)已知,求的值.
(本小题满分14分)已知,1)若,求方程的解;2)若对在上有两个零点,求的取值范围.