题目内容
5.已知a+b>0,b=4a,(a+b)n的展开式按a的降幂排列,其中第n项与第n+1项相等,求正整数n.分析 由条件知,${C}_{n}^{n-1}a{b}^{n-1}$=${C}_{n}^{n}{b}^{n}$,结合b=4a,可求正整数n.
解答 解:由条件知,${C}_{n}^{n-1}a{b}^{n-1}$=${C}_{n}^{n}{b}^{n}$,
∴nabn-1=bn,
∴na=b,
又b=4a,得到n=4.
点评 本题考查二项式定理的应用,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
15.若向量$\overrightarrow{a}$=(sin(α+$\frac{π}{6}$),1),$\overrightarrow{b}$=(1,cosα-$\frac{\sqrt{3}}{4}$),$\overrightarrow{a}$⊥$\overrightarrow{b}$,则sin(α+$\frac{4π}{3}$)=( )
A. | -$\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{4}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
16.为了了解某班同学喜爱打篮球是否与性别有关,对该班全体同学进行了问卷调查,统计调查结果得到如下列联表
已知从该班全体同学中随机抽取1人,抽到喜爱打篮球的学生的概率为$\frac{3}{5}$.
(Ⅰ)求列联表中m,n的值;
(Ⅱ)用分层抽样的方法在喜欢打篮球的同学中抽取6名同学,然后再从这6名同学中任取2名同学,求所选2名同学中至少有1名女生的概率.
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | m | 5 | |
女生 | 10 | n | |
合计 | 50 |
(Ⅰ)求列联表中m,n的值;
(Ⅱ)用分层抽样的方法在喜欢打篮球的同学中抽取6名同学,然后再从这6名同学中任取2名同学,求所选2名同学中至少有1名女生的概率.