题目内容
【题目】已知关于x的一元二次方程.
(1)若a、b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;
(2)若a∈[2,4],b∈[0,6],求方程没有实根的概率
【答案】(1)(2)
【解析】
试题分析:(1)本题是一个古典概型,用(a,b)表示一枚骰子投掷两次所得到的点数的事件,基本事件(a,b)的总数有36个满足条件的事件是二次方程有两正根,根据实根分布得到关系式,得到概率;(2)本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,},做出两者的面积,得到概率
试题解析:设“方程有两个正根”的事件为A,
(1)由题意知本题是一个古典概型用(a,b)表示一枚骰子投掷两次所得到的点数的事件
依题意知,基本事件(a,b)的总数有36个,
二次方程x2﹣2(a﹣2)x﹣b2+16=0有两正根,等价于
,即,
则事件A包含的基本事件为(6,1)、(6,2)、(6,3)、(5,3)共4个
∴所求的概率为P(A)=;
(2)由题意知本题是一个几何概型,
试验的全部结果构成区域Ω={(a,b)|2≤a≤4,0≤b≤6},
其面积为S(Ω)=12
满足条件的事件为:B={(a,b)|2≤a≤4,0≤b≤6,(a﹣2)2+b2<16},如图中阴影部分所示,
其面积为S(B)=+=
∴所求的概率P(B)=.
练习册系列答案
相关题目