题目内容
2.在△ABC中,若2cosB•sinA=sinC,则△ABC一定是( )三角形.A. | 等腰 | B. | 直角 | C. | 等边 | D. | 等腰直角 |
分析 在△ABC中,总有A+B+C=π,利用此关系式将题中:“2cosB•sinA=sinC,”化去角C,最后得到关系另外两个角的关系,从而解决问题.
解答 解析:∵2cosB•sinA=sinC=sin(A+B)⇒sin(A-B)=0,
又B、A为三角形的内角,
∴A=B.
答案:A.
点评 本题主要考查三角函数的两角和与差的正弦函数,属于基础题,在判定三角形形状时,一般考虑两个方向进行变形,一个方向是边,走代数变形之路,另一个方向是角,走三角变换之路.
练习册系列答案
相关题目
17.曲线y=ax2在点(1,a)处的切线与直线x+y+5=0 平行,则a的值为( )
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | -1 |
7.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow{b}$|=4,且$\overrightarrow{a}$⊥(2$\overrightarrow{a}$-$\overrightarrow{b}$),则$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为( )
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
14.己知i为虚数单位,则$\frac{i}{1+i}$=( )
A. | $\frac{1+i}{2}$ | B. | $\frac{-1-i}{2}$ | C. | $\frac{1-i}{2}$ | D. | $\frac{-1+i}{2}$ |
11.若(1-$\frac{1}{{x}^{2}}$)n(n∈N*,n>1)的展开式中x-4的系数为an,则$\frac{1}{{a}_{2}}+\frac{1}{{a}_{3}}+…+\frac{1}{{a}_{n}}$为( )
A. | $\frac{n-1}{n}$ | B. | $\frac{2n-2}{n}$ | C. | $\frac{1-n}{n}$ | D. | $\frac{2-2n}{n}$ |