题目内容
【题目】已知函数f(x)=ln(x+1)-x.
⑴求函数f(x)的单调递减区间;
⑵若,证明:.
【答案】⑴(0,+∞);⑵证明见详解
【解析】
第一问利用导数求函数的单调递减区间,第二问是函数类不等式的证明,这类问题常常以导数为工具,利用函数的单调性来解决.
解:解:(1)函数f(x)的定义域为.=-1=-.由<0及x>-1,得x>0.∴ 当x∈(0,+∞)时,f(x)是减函数,即f(x)的单调递减区间为(0,+∞).
(2)证明:由⑴知,当x∈(-1,0)时,>0,当x∈(0,+∞)时,<0,
因此,当时,≤,即≤0∴.
令,则=.
∴ 当x∈(-1,0)时,<0,当x∈(0,+∞)时,>0.
∴ 当时,≥,即≥0,∴.
综上可知,当时,有.
练习册系列答案
相关题目
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了11月1日至11月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如表资料:
日期 | 11月1日 | 11月2日 | 11月3日 | 11月4日 | 11月5日 |
温差(℃) | 8 | 11 | 12 | 13 | 10 |
发芽数(颗) | 16 | 25 | 26 | 30 | 23 |
设农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(参考:,)
(1)若选取的是11月1日与11月5日的两组数据进行检验,请根据11月2日至11月4日的三组数据,求出关于的线性回归方程;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?