题目内容
3.若定义在R上的偶函数f(x)在区间(-∞,0]上单调递减,且f(2)=0,求使得f(x)<0的x的范围.分析 根据函数奇偶性和单调性之间的关系,将不等式进行转化即可得到结论.
解答 解:∵函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数,
∴函数f(x)在[0,+∞)上为增函数,且f(-2)=-f(2)=0,
作出函数f(x)的草图:
如图:则不等式等价为f(x)<0的解为-2<x<2,
故不等式的解集为(-2,2).
点评 本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.
练习册系列答案
相关题目
8.如果loga2>logb2>0,那么( )
A. | 1<a<b | B. | 1<b<a | C. | 0<a<b<1 | D. | 0<b<a<1 |
12.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=5,$\overrightarrow{a}$与$\overrightarrow{b}$不共线,若向量k$\overrightarrow{a}$+$\overrightarrow{b}$与k$\overrightarrow{a}$-$\overrightarrow{b}$互相垂直,则实数k的值为( )
A. | $\frac{5}{3}$ | B. | $\frac{3}{5}$ | C. | ±$\frac{3}{5}$ | D. | ±$\frac{5}{3}$ |