题目内容
数列{an}的前n项和为Sn,满足a1=1,3tSn-(2t+3)Sn-1=3t,其中t>0,n∈N*,n≥2.(1)求证:数列{an}是等比数列;
(2)设数列{an}的公比为f(t),数列{bn}满足b1=1,bn=f()(n≥2),求{bn}的通项公式;
(3)记Tn=b1b2-b2b3+b3b4-b4b5+…+b2n-1b2n-b2nb2n+1,求证Tn≤-.
解:(1)3tSn-(2t+3)Sn-1=3t, ①
3tSn+1-(2t+3)Sn=3t, ②
②-①得3tan+1-(2t+3)an=0,
∴.
又a1=1,3t(a1+a2)-(2t+3)a1=3t,解得a2=.∴.
∴{an}是等比数列.
(2)f(t)=,
∴bn=.
∴bn-bn-1=.∴数列{bn}为等差数列,bn=1+(n-1)·=n+.
(3)Tn=b2(b1-b3)+b4(b3-b5)+…+b2n(b2n-1-b2n+1)=-(b2+b4+…+b2n)
=-·(2n2+3n),
当n≥1时,f(n)=2n2+3n为减函数,
∴Tn≤-.
练习册系列答案
相关题目