题目内容
【题目】已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.
(1)求椭圆的方程;
(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.
【答案】(1);(2)是,定点坐标为或
【解析】
(1)根据相切得到,根据离心率得到,得到椭圆方程.
(2)设直线的方程为,点、的坐标分别为,,联立方程得到,,计算点的坐标为,点的坐标为,圆的方程可化为,得到答案.
(1)根据题意:,因为,所以,
所以椭圆的方程为.
(2)设直线的方程为,点、的坐标分别为,,
把直线的方程代入椭圆方程化简得到,
所以,,
所以,,
因为直线的斜率,所以直线的方程,
所以点的坐标为,同理,点的坐标为,
故以为直径的圆的方程为,
又因为,,
所以圆的方程可化为,令,则有,
所以定点坐标为或.
【题目】某乡镇为了发展旅游行业,决定加强宣传,据统计,广告支出费与旅游收入(单位:万元)之间有如下表对应数据:
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)求旅游收入对广告支出费的线性回归方程,若广告支出费万元,预测旅游收入;
(2)在已有的五组数据中任意抽取两组,根据(1)中的线性回归方程,求至少有一组数据,其预测值与实际值之差的绝对值不超过的概率.(参考公式:,,其中为样本平均值,参考数据:,,)
【题目】为了调查某大学学生在周日上网的时间,随机对名男生和名女生进行了不记名的问卷调查,得到了如下的统计结果:
表1:男生上网时间与频数分布表:
上网时间(分钟) | |||||
人数 | 5 | 25 | 30 | 25 | 15 |
表2:女生上网时间与频数分布表:
上网时间(分钟) | |||||
人数 | 10 | 20 | 40 | 20 | 10 |
(1)若该大学共有女生人,试估计其中上网时间不少于分钟的人数;
(2)完成表3的列联表,并回答能否有的把握认为“学生周日上网时间与性别有关”?
(3)从表3的男生中“上网时间少于分钟”和“上网时间不少于分钟”的人数中用分层抽样的方法抽取一个容量为的样本,再从中任取两人,求至少有一人上网时间超过分钟的概率.表3:
上网时间少于60分钟 | 上网时间不少于60分钟 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,其中,
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |