题目内容
【题目】如图,某生态园将一三角形地块的一角开辟为水果园种植桃树,已知角为,的长度均大于米,现在边界处建围墙,在处围竹篱笆.
(1)若围墙总 长度为米,如何围可使得三角形地块的面积最大?
(2)已知段围墙高米,段围墙高米,造价均为每平方米元.若围围墙用了元,问如何围可使竹篱笆用料最省?
【答案】(1)当米,米时, 可使三角形地块的面积最大;(2)当米,米时, 可使篱笆最省.
【解析】
试题分析:(1)易得的面积.当且仅当时,取“”.即当米;(2)由题意得,要使竹篱笆用料最省,只需其长度最短,又
,当时, 有最小值,从而求得正解.
试题解析:设米,米.
(1)则的面积.
当且仅当,即时,取“”.即当米,米时, 可使三角形地块的面积最大.
(2)由题意得,即,要使竹篱笆用料最省,只需其长度最短,所以
,当时, 有最小值,此时当米,米时, 可使篱笆最省.
练习册系列答案
相关题目
【题目】在一次篮球定点投篮训练中,规定每人最多投3次,在处每投进一球得3分;在处每投进一球得2分,如果前两次得分之和超过3分就停止投篮;否则投第3次,某同学在处的抽中率,在处的抽中率为,该同学选择现在处投第一球,以后都在处投,且每次投篮都互不影响,用表示该同学投篮训练结束后所得的总分,其分布列为:
0 | 2 | 3 | 4 | 5 | |
0.03 |
(1)求的值;
(2)求随机变量的数学期望;
(3)试比较该同学选择上述方式投篮得分超过3分与选择都在处投篮得分超过3分的概率的大小.