ÌâÄ¿ÄÚÈÝ
8£®É趨ÒåÓòΪRµÄº¯Êýf£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}£¨x+2£©£¬x¡Ý-1}\\{{x}^{2}+4x+4£¬x£¼-1}\end{array}\right.$£®£¨1£©ÔÚƽÃæÖ±½Ç×ø±êÄÚ×÷³öº¯Êýf£¨x£©µÄͼÏ󣬲¢Ö¸³öf£¨x£©µÄµ¥µ÷Çø¼ä£¨²»ÐèÖ¤Ã÷£©£»
£¨2£©Èô¹ØÓÚxµÄ·½³Ìf£¨x£©-2a=0ÓÐÁ½¸ö²»ÏàµÈµÄʵÊý¸ù£¬ÇóaµÄÈ¡Öµ·¶Î§£¨Ö»Ðè¼òµ¥ËµÃ÷£¬²»ÐèÑϸñÖ¤Ã÷£©£»
£¨3£©Éèg£¨x£©ÎªRÉϵÄÆ溯Êý£¬ÇÒµ±x£¾0ʱ£¬g£¨x£©=f£¨x£©£¬Çóg£¨x£©µÄ½âÎöʽ£®
·ÖÎö £¨1£©¸ù¾Ýº¯Êý½âÎöʽ£¬¿ÉµÃº¯ÊýµÄͼÏ󣬴Ӷø¿ÉµÃº¯ÊýµÄµ¥µ÷Çø¼ä£»
£¨2£©ÔÚͬһ×ø±êϵÖÐͬʱ×÷³öy=f£¨x£©£¬y=2aͼÏó£¬ÓÉͼ¿ÉÖªf£¨x£©-2a=0ÓÐÁ½¸ö½â£¬Ðë2a=0»ò2a¡Ý1£¬´Ó¶ø¿ÉÇóaµÄÈ¡Öµ·¶Î§£»
£¨3£©Çó³öx£¼0ʱ£¬º¯ÊýµÄ½âÎöʽ£¬¼´¿ÉÇóµÃg£¨x£©µÄ½âÎöʽ£®
½â´ð ½â £¨1£©Èçͼ£®¡£¨3·Ö£©
µ¥ÔöÇø¼ä£º[-2£¬-1£©£¬[-1£¬+¡Þ£©µ¥¼õÇø¼ä£¨-¡Þ£¬-2]£¬¡£¨5·Ö£©
£¨2£©ÔÚͬһ×ø±êϵÖÐͬʱ×÷³öy=f£¨x£©£¬y=2aͼÏó£¬ÓÉͼ¿ÉÖªf£¨x£©-2a=0ÓÐÁ½¸ö½â
Ðë2a=0»ò2a¡Ý1£¬¼´a=0»òa¡Ý$\frac{1}{2}$ ¡£¨8·Ö£©
£¨3£©µ±x£¼0ʱ£¬-x£¾0£¬¡àg£¨-x£©=log2£¨-x+2£©£¬
ÒòΪg£¨x£©ÎªÆ溯Êý£¬ËùÒÔg£¨x£©=-log2£¨-x+2£©£¬¡£¨10·Ö£©
ÇÒg£¨0£©=0£¬ËùÒÔg£¨x£©=$\left\{\begin{array}{l}{lo{g}_{2}£¨x+2£©£¬x£¾0}\\{0£¬x=0}\\{-lo{g}_{2}£¨-x+2£©£¬x£¼0}\end{array}\right.$¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÔËÓ㬿¼²éº¯ÊýµÄͼÏ󣬿¼²éÊýÐνáºÏµÄÊýѧ˼Ï룬ÕýÈ·×öºÃº¯ÊýµÄͼÏóÊǹؼü£®
A£® | ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍ´óÓÚ8µÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
B£® | ÒÑÖªF1£¨-4£¬0£©£¬F2£¨4£¬0£©£¬µ½Á½µãF1£¬F2µÄ¾àÀëÖ®ºÍµÈÓÚ6µÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
C£® | µ½µãF1£¨-4£¬0£©£¬F2£¨4£¬0£©µÄ¾àÀëÖ®ºÍµÈÓڴӵ㣨5£¬3£©µ½F1£¬F2µÄ¾àÀëÖ®ºÍµÄµãµÄ¹ì¼£ÊÇÍÖÔ² | |
D£® | µ½µãF1£¨-4£¬0£©£¬F2£¨4.0£©¾àÀëÏàµÈµÄµãµÄ¹ì¼£ÊÇÍÖÔ² |