题目内容

3.已知集合M={x|x2-4x+3<0},N={x||x-3|≤1}.
(1)求出集合M,N;
(2)试定义一种新集合运算△,使M△N={x|1<x<2};
(3)若有P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$},按(2)的运算,求出(N△M)△P.

分析 (1)利用不等式的解法,求出集合M,N;
(2)M△N中的元素都在M中但不在N中;
(3)P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$}=(2.5,3.5],按(2)的运算,即可求出(N△M)△P.

解答 解:(1)M={x|x2-4x+3<0}={x|1<x<3},N={x||x-3|≤1}={x|2≤x≤4}.
(2)M△N中的元素都在M中但不在N中,
∴定义M△N={x|x∈M且x∉N}.
(3)P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$}=(2.5,3.5],
∵N△M={x|3≤x≤4},
∴(N△M)△P={x|3≤x≤4}.

点评 本题考查集合的运算,考查学生解不等式的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网