题目内容
3.已知集合M={x|x2-4x+3<0},N={x||x-3|≤1}.(1)求出集合M,N;
(2)试定义一种新集合运算△,使M△N={x|1<x<2};
(3)若有P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$},按(2)的运算,求出(N△M)△P.
分析 (1)利用不等式的解法,求出集合M,N;
(2)M△N中的元素都在M中但不在N中;
(3)P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$}=(2.5,3.5],按(2)的运算,即可求出(N△M)△P.
解答 解:(1)M={x|x2-4x+3<0}={x|1<x<3},N={x||x-3|≤1}={x|2≤x≤4}.
(2)M△N中的元素都在M中但不在N中,
∴定义M△N={x|x∈M且x∉N}.
(3)P={x||$\frac{x-3.5}{x-2.5}$|≥$\frac{x-3.5}{x-2.5}$}=(2.5,3.5],
∵N△M={x|3≤x≤4},
∴(N△M)△P={x|3≤x≤4}.
点评 本题考查集合的运算,考查学生解不等式的能力,属于中档题.
练习册系列答案
相关题目
13.函数f(x)=ex-e-x(x∈R)的奇偶性是( )
A. | 奇函数 | B. | 偶函数 | ||
C. | 非奇非偶函数 | D. | 既是奇函数也是偶函数 |
14.下列各式错误的是( )
A. | 30.8>30.7 | B. | 0.75-0.1<0.750.1 | ||
C. | log0.50.4>log0.50.6 | D. | lg1.6>lg1.4 |
11.某同学用“五点法”画函数f(x)=Asin(ωx+ϕ)+B,A>0,ω>0,|ϕ|<$\frac{π}{2}$在某一个周期内的图象时,列表并填入了部分数据,如下表:
(Ⅰ)请求出上表中的x1、x2、x3,并直接写出函数f(x)的解析式;
(Ⅱ)将f(x)的图象沿x轴向右平移$\frac{2}{3}$个单位得到函数g(x),当x∈[0,4]时其图象的最高点和最低点分别为P,Q,求$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小.
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
x | x1 | $\frac{1}{3}$ | x2 | $\frac{7}{3}$ | x3 |
Asin(ωx+ϕ)+B | 0 | $\sqrt{3}$ | 0 | -$\sqrt{3}$ | 0 |
(Ⅱ)将f(x)的图象沿x轴向右平移$\frac{2}{3}$个单位得到函数g(x),当x∈[0,4]时其图象的最高点和最低点分别为P,Q,求$\overrightarrow{OQ}$与$\overrightarrow{QP}$夹角θ的大小.