题目内容
【题目】已知函数f(x)=4x-2·2x+1-6,其中x∈[0,3].
(1)求函数f(x)的最大值和最小值;
(2)若实数a满足f(x)-a≥0恒成立,求a的取值范围.
【答案】(1)f(x)min=-10,f(x)max=26;(2)(-∞,-10].
【解析】试题分析:(1)由题意可得,f(x)=4x-2·2x+1-6,令t=2x,从而可转化为二次函数在区间[1,8]上的最值的求解
(2)由题意可得,a≤f(x)恒成立a≤f(x)min恒成立,结合(1)可求
试题解析:
(1)f(x)=(2x)2-4·2x-6(0≤x≤3).
令t=2x,∵0≤x≤3,∴1≤t≤8.
则h(t)=t2-4t-6=(t-2)2-10(1≤t≤8).
当t∈[1,2]时,h(t)是减函数;当t∈(2,8]时,h(t)是增函数.
∴f(x)min=h(2)=-10,f(x)max=h(8)=26.
(2)∵f(x)-a≥0恒成立,即a≤f(x)恒成立,
∴a≤f(x)min恒成立.
由(1)知f(x)min=-10,∴a≤-10.
故a的取值范围为(-∞,-10].
练习册系列答案
相关题目