ÌâÄ¿ÄÚÈÝ
ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã£¬ÈôÍÖÔ²CÉϵÄÒ»µãA£¨1£¬
£©µ½F1£¬F2µÄ¾àÀëÖ®ºÍΪ4£®
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÈôM£¬NÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µÄµã£¬Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãP£¬ÇóÖ¤£º|
|£¼
£»
£¨3£©ÈôM£¬NÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µÄµã£¬QÊÇÍÖÔ²CÉϲ»Í¬ÓÚM£¬NµÄÈÎÒâÒ»µã£¬ÈôÖ±ÏßQM£¬QNµÄбÂÊ·Ö±ðΪKQM•KQN£®ÎÊ£º¡°µãM£¬N¹ØÓÚÔµã¶Ô³Æ¡±ÊÇKQM•KQN=-
µÄʲôÌõ¼þ£¿Ö¤Ã÷ÄãµÄ½áÂÛ£®
x2 |
a2 |
y2 |
b2 |
3 |
2 |
£¨1£©ÇóÍÖÔ²·½³Ì£»
£¨2£©ÈôM£¬NÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µÄµã£¬Ï߶ÎMNµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãP£¬ÇóÖ¤£º|
OP |
1 |
2 |
£¨3£©ÈôM£¬NÊÇÍÖÔ²CÉÏÁ½¸ö²»Í¬µÄµã£¬QÊÇÍÖÔ²CÉϲ»Í¬ÓÚM£¬NµÄÈÎÒâÒ»µã£¬ÈôÖ±ÏßQM£¬QNµÄбÂÊ·Ö±ðΪKQM•KQN£®ÎÊ£º¡°µãM£¬N¹ØÓÚÔµã¶Ô³Æ¡±ÊÇKQM•KQN=-
3 |
4 |
·ÖÎö£º£¨1£©ÓÉÌâÒâ¿ÉµÃ
£¬½âµÃ¼´¿É£»
£¨2£©ÀûÓÃÏ߶δ¹Ö±Æ½·ÖÏßµÄÐÔÖʺ͵ãÔÚÍÖÔ²Éϼ´¿ÉµÃ³ö£»
£¨3£©ÀûÓá°µãM£¬N¹ØÓÚÔµã¶Ô³Æ¡±ºÍбÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
|
£¨2£©ÀûÓÃÏ߶δ¹Ö±Æ½·ÖÏßµÄÐÔÖʺ͵ãÔÚÍÖÔ²Éϼ´¿ÉµÃ³ö£»
£¨3£©ÀûÓá°µãM£¬N¹ØÓÚÔµã¶Ô³Æ¡±ºÍбÂʼÆË㹫ʽ¼´¿ÉµÃ³ö£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ
£¬½âµÃa=2£¬b2=3£®
¡àÍÖÔ²·½³ÌΪ
+
=1£»
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬0£©£¬
Ôò|PM|=|PN|£¬¡à(x1-x0)2+
=(x2-y2)2+
£®£¨*£©
ÓÖM£¬NÔÚÍÖÔ²ÉÏ£¬¡à
=3-
£¬
=3-
£»
´úÈ루*£©µÃx0=
£¼
=
£¬ÔòÓÐ|
|£¼
£®
£¨3£©¡°µãM£¬N¹ØÓÚÔµã¶Ô³Æ¡±ÊÇKQM•KQN=-
µÄ³äÒªÌõ¼þ£®
Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÔòN£¨-x1£¬-y1£©£®
ÓÚÊÇ
+
=1£¬
+
=1£¬µÃµ½
=-
£®
¡àkQM•kQN=
•
=
=-
?µãM£¬N¹ØÓÚÔµã¶Ô³Æ£®
|
¡àÍÖÔ²·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨2£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬P£¨x0£¬0£©£¬
Ôò|PM|=|PN|£¬¡à(x1-x0)2+
y | 2 1 |
y | 2 2 |
ÓÖM£¬NÔÚÍÖÔ²ÉÏ£¬¡à
y | 2 1 |
3 |
4 |
x | 2 1 |
y | 2 2 |
3 |
4 |
x | 2 2 |
´úÈ루*£©µÃx0=
x1+x2 |
8 |
2+2 |
8 |
1 |
2 |
OP |
1 |
2 |
£¨3£©¡°µãM£¬N¹ØÓÚÔµã¶Ô³Æ¡±ÊÇKQM•KQN=-
3 |
4 |
Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬Q£¨x0£¬y0£©£¬ÔòN£¨-x1£¬-y1£©£®
ÓÚÊÇ
| ||
4 |
| ||
3 |
| ||
4 |
| ||
3 |
| ||||
|
3 |
4 |
¡àkQM•kQN=
y1-y0 |
x1-x0 |
-y1-y0 |
-x1-x0 |
| ||||
|
3 |
4 |
µãÆÀ£ºÊìÁ·ÕÆÎÕÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ð±ÂʼÆË㹫ʽ¡¢³äÒªÌõ¼þµÈÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿