题目内容

【题目】等比数列{an}的各项均为正数,且a1a5=4,则log2a1+log2a2+log2a3+log2a4+log2a5=

【答案】5

【解析】

试题分析:可先由等比数列的性质求出a3=2,再根据性质化简log2a1+log2a2+log2a3+log2a4+log2a5=5log2a3,代入即可求出答案.

解:log2a1+log2a2+log2a3+log2a4+log2a5=log2a1a2a3a4a5=log2a35=5log2a3

又等比数列{an}中,a1a5=4,即a3=2.

故5log2a3=5log22=5.

故选为:5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网