题目内容
【题目】已知直线l:mx﹣y﹣m+2=0与圆C:x2+y2+4x﹣4=0交于A,B两点,若△ABC为直角三角形,则m= .
【答案】0或
【解析】解:圆心C(﹣2,0),半径r= =4 ,
∵直线l:mx﹣y﹣m+2=0与圆C:x2+y2+4x﹣4=0交于A,B两点,△ABC为直角三角形,
∴|AB|= = =8,
∴圆心C(﹣2,0)到直线l:mx﹣y﹣m+2=0的距离:
d= = =4,
解得m=0或m= .
所以答案是:0或 .
【考点精析】掌握直线与圆的三种位置关系是解答本题的根本,需要知道直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.
练习册系列答案
相关题目
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
加工零件x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(分钟) | 64 | 69 | 75 | 82 | 90 |
经检验,这组样本数据具有线性相关关系,那么对于加工零件的个数x与加工时间y这两个变量,下列判断正确的是( )
A.成正相关,其回归直线经过点(30,75)
B.成正相关,其回归直线经过点(30,76)
C.成负相关,其回归直线经过点(30,76)
D.成负相关,其回归直线经过点(30,75)