题目内容

已知F1,F2分别为双曲
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点,P为双曲线左支上任一点,若
|PF2|2
|PF1|
的最小值为8a,则双曲线的离心率e的取值范围是(  )
A、(1,+∞)
B、(0,3]
C、(1,3]
D、(0,2]
分析:由定义知:|PF2|-|PF1|=2a,|PF2|=2a+|PF1|,
|PF2|2
|PF1|
=
(2a+|PF1|)2
|PF1|
=
4a2
|PF1|
+4a+|PF1| ≥8a
,当且仅当
4a2
|PF1|
=|PF1|
,即|PF1|=2a时取得等号.再由焦半径公式得双曲线的离心率的取值范围.
解答:解:由定义知:|PF2|-|PF1|=2a,
|PF2|=2a+|PF1|,
|PF2|2
|PF1|
=
(2a+|PF1|)2
|PF1|

=
4a2
|PF1|
+4a+|PF1| ≥8a

当且仅当
4a2
|PF1|
=|PF1|

即|PF1|=2a时取得等号
设P(x0,y0) (x0≤-a)
由焦半径公式得:
|PF1|=-ex0-a=2a
ex0=-2a
e=-
3a
x0
≤3
又双曲线的离心率e>1
∴e∈(1,3].
故选C.
点评:本题考查双曲线的性质和应用,解题时要认真审题,注意焦半径公式的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网