题目内容
【题目】某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)求六月份这种酸奶一天的需求量(单位:瓶)的分布列;
(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量(单位:瓶)为多少时,的数学期望达到最大值?
【答案】(1)分布列见解析;(2)520.
【解析】分析:(1)根据题意所有的可能取值为200,300,500,由表格数据知,,;(2)分两种情况:当时,当时,分别得到利润表达式.
详解:
(1)由题意知,所有的可能取值为200,300,500,由表格数据知
,,.
因此的分布列为
0.2 | 0.4 | 0.4 |
(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑
当时,
若最高气温不低于25,则;
若最高气温位于区间,则;
若最高气温低于20,则
因此
当时,
若最高气温不低于20,则,
若最高气温低于20,则,
因此
所以时,的数学期望达到最大值,最大值为520元.
【题目】某服装批发市场1-5月份的服装销售量与利润的统计数据如下表:
月份 | 1 | 2 | 3 | 4 | 5 |
销售量 (万件) | 3 | 6 | 4 | 7 | 8 |
利润 (万元) | 19 | 34 | 26 | 41 | 46 |
(1)从这五个月的利润中任选2个,分别记为, ,求事件“, 均不小于30”的概率;
(2)已知销售量与利润大致满足线性相关关系,请根据前4个月的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的利润的估计数据与真实数据的误差不超过2万元,则认为得到的利润的估计数据是理想的.请用表格中第5个月的数据检验由(2)中回归方程所得的第5个月的利润的估计数据是否理想.参考公式: .
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门随机对50名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在30名男性驾驶员中,平均车速超过的有20人,不超过的有10人.在20名女性驾驶员中,平均车速超过的有5人,不超过的有15人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过的人与性别有关;
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为女性且车速不超过的车辆数为,若每次抽取的结果是相互独立的,求的数学期望.
参考公式:,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |