题目内容

【题目】某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备。现采用分层抽样法从全厂工人中抽取一个容量为20的样本参加新设备培训,培训结束后进行结业考试。已知各年龄段培训结业考试成绩优秀的人数如下表所示:

若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为___________.

【答案】

【解析】分析:由频率分布直方图计算出年龄段[20,30)和[40,50)的人数,各选一人得基本事件总数,再分两种情况计算恰有一个优秀的事件个数,作比即为概率.

详解:由频率分布直方图可知,年龄段[20,30),[30,40),[40,50),[50,60]的人数的频率分别为0.3,0.35,0.2,0.15,所以年龄段[20,30),[30,40),[40,50),[50,60]应抽取人数分别为6,7,4,3.

若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为.

故答案为:.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网