题目内容
(本小题满分13分)已知椭圆的中心在原点,一个焦点F1(0,-2),且离心率e满足:,e,成等比数列.
(1)求椭圆方程;
(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.
(1)求椭圆方程;
(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线x=-
平分.若存在,求出l的倾斜角的范围;若不存在,请说明理由.
解:(1)依题意e=.
又F1(0,-2), c=2,a=3,b=1,∴所求方程为x2+y2=1
(2)假设存在直线l,依题意l交椭圆所得弦MN被x=-平分,∴直线l的斜率
存在.设直线l:y=kx+m
由 消去y,整理得
(k2+9)x2+2kmx+m2-9=0
∵l与椭圆交于不同的两点M,N,
∴Δ=4k2m2-4(k2+9)(m2-9)>0
即m2-k2-9<0 ①
设M(x1,y1),N(x2,y2)
∴,
∴m= ②
把②代入①式中得
-(k2+9)<0
∴k>或k<-
∴直线l倾斜角α∈(,)∪(,)
又F1(0,-2), c=2,a=3,b=1,∴所求方程为x2+y2=1
(2)假设存在直线l,依题意l交椭圆所得弦MN被x=-平分,∴直线l的斜率
存在.设直线l:y=kx+m
由 消去y,整理得
(k2+9)x2+2kmx+m2-9=0
∵l与椭圆交于不同的两点M,N,
∴Δ=4k2m2-4(k2+9)(m2-9)>0
即m2-k2-9<0 ①
设M(x1,y1),N(x2,y2)
∴,
∴m= ②
把②代入①式中得
-(k2+9)<0
∴k>或k<-
∴直线l倾斜角α∈(,)∪(,)
略
练习册系列答案
相关题目