题目内容
△ABC中,a,b,c分别为角A,B,C所对的边,且a=4,b+c=5,tanA+tanB+
=
tanAtanB.
(1)求角C;
(2)求△ABC的面积.
3 |
3 |
(1)求角C;
(2)求△ABC的面积.
(1)由tanA+tanB+
=
tanAtanB,得tanA+tanB=-
(1-tanAtanB)
=-
,
∴tan(A+B)=
=-
,∵△ABC中,∴A+B=π-C,
∴tan(A+B)=-tanC=-
,tanC=
C=
.
(2)a=4,b+c=5,∵由c2=a2+b2-2abcosCc2=16+(5-c)2-8(5-c)×
,
解得:c=
,b=
,∴S△ABC=
absinC=
×4×
×
=
.
3 |
3 |
3 |
tanA+tanB |
1-tanAtanB |
3 |
∴tan(A+B)=
tanA+tanB |
1-tanAtanB |
3 |
∴tan(A+B)=-tanC=-
3 |
3 |
π |
3 |
(2)a=4,b+c=5,∵由c2=a2+b2-2abcosCc2=16+(5-c)2-8(5-c)×
1 |
2 |
解得:c=
7 |
2 |
3 |
2 |
1 |
2 |
1 |
2 |
3 |
2 |
| ||
2 |
3
| ||
2 |
练习册系列答案
相关题目