题目内容

如图,在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,则BC的长为______.
在△ABD中,设BD=x,则BA2=BD2+AD2-2BD•AD•cos∠BDA,即142=x2+102-2•10x•cos60°,
整理得x2-10x-96=0,解之得x1=16,x2=-6(舍去).
在△BCD中,由正弦定理:
BC
sin∠CDB
=
BD
sin∠BCD

∴BC=
16
sin135°
•sin30°=8
2

故答案为:8
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网