题目内容
13.cos80°cos130°-sin80°sin130°等于( )A. | -$\frac{{\sqrt{3}}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
分析 根据两角和差的余弦公式进行化简即可.
解答 解:由两角和差的余弦公式得cos80°cos130°-sin80°sin130°=cos(80°+130°)=cos210°
=-cos30°=-$\frac{{\sqrt{3}}}{2}$,
故选:A.
点评 本题主要考查三角函数值的计算,利用两角和差的余弦公式是解决本题的关键.
练习册系列答案
相关题目
4.盒子中分别有红球3个、白球2个、黑球1个,共6个球,从中任意取出两个球,则与事件“至少有一个白球”互斥而不对立的事件是( )
A. | 都是白球 | B. | 至少有一个红球 | C. | 至少有一个黑球 | D. | 红、黑球各一个 |
8.设x,y∈R且满足$\left\{\begin{array}{l}{x≥1}\\{x+y-6≤0}\\{y≥x}\end{array}\right.$,则z=x+2y的最小值等于( )
A. | 2 | B. | 3 | C. | 9 | D. | 11 |
5.将正整数1,2,3,4,5随机分成甲乙两组,使得每组至少有一个数,则每组中各数之和是3的倍数的概率是( )
A. | $\frac{2}{21}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{2}{5}$ |
2.某同学想要作一个三边上的高分别为15、21、35的三角形,则下列说法正确的是( )
A. | 可以做出这样的三角形,且最大内角为$\frac{5π}{6}$ | |
B. | 可以做出这样的三角形,且最大内角为$\frac{3π}{4}$ | |
C. | 可以做出这样的三角形,且最大内角为$\frac{2π}{3}$ | |
D. | 不可能做出这样的三角形 |
11.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的两个焦点F1,F2,点M在椭圆上,且MF1⊥F1F2,|MF1|=$\frac{4}{3}$,|MF2|=$\frac{14}{3}$,则离心率e等于( )
A. | $\frac{{\sqrt{5}}}{8}$ | B. | $\frac{{\sqrt{5}}}{6}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}}}{4}$ |