题目内容
6.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 5 | ||
女生 | 10 | ||
合计 | 50 |
(1)请将上面的列联表补充完整;
(2)是否有99%以上的把握认为喜爱打篮球与性别有关?说明你的理由.
分析 (1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,可得喜爱打篮球的学生,即可得到列联表;
(2)利用公式求得K2,与临界值比较,即可得到结论
解答 解:(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为$\frac{3}{5}$,可得喜爱打篮球的学生为30人,故可得列联表补充如下:
喜爱打篮球 | 不喜爱打篮球 | 合计 | |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
得到k2=$\frac{n{(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{50(20×15-10×5)^{2}}{30×20×25×25}$≈8.333>6.635,
∴有99%以上的把握认为喜爱打篮球与性别有关.
点评 本题考查独立性检验知识,考查学生的计算能力,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
1.若x∈R,则下列不等式恒成立的是( )
A. | lg(x2+1)≥lg2x | B. | 2x≤$\frac{{{{(x+1)}^2}}}{2}$ | C. | $\frac{1}{{{x^2}+1}}$<1 | D. | x2+1>2x |
11.4位同学每人从甲、乙、丙3门课程中选修2门,则恰有2人选修课程甲的不同选法共有( )
A. | 12种 | B. | 24种 | C. | 30种 | D. | 36种 |
18.把函数y=sin(5x-$\frac{π}{2}$)的图象向右平移$\frac{π}{4}$个单位长度,再把所得图象上各点的横坐标缩短为原来的$\frac{1}{2}$,纵坐标不变,所得图象对应的函数解析式为( )
A. | y=sin(10x-$\frac{3}{4}$π) | B. | y=sin(10x-$\frac{7}{2}$π) | C. | y=sin(10x-$\frac{3}{2}$x) | D. | y=sin(10x-$\frac{7}{4}$π) |