题目内容
【题目】已知函数,则
()函数定义域为__________.
()函数导函数为__________.
()对函数单调研究如下
____
()设函数则
函数的最大值为__________.
(5)函数极值点共__________个,(6)其中极小值点有__________个.
(7)若关于的方程恰有三个不相同的实数解,则的取值范围为__________.
【答案】 (1) (2) (3)
极小值 | 极小值 |
(4) (5)4 (6)2 (7)
【解析】(1)由题意得,所以函数的定义域是
(2)∵
∴
(3)由(2)得
令,即,解得或1
令,解得或
令,解得
所以有
极小值 | 极小值 |
(4)∵
,
令,
解得或,
令解得或,
在和单调递增,
令解得,
在单调递减,
当时, 极大值,
当时, 极小值,
又∵图象如图,
由图可知,当时,
,
且共有个极值点,其中有个极小值点,
关于的方程恰有个不同的解.
练习册系列答案
相关题目
【题目】某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(最大供应量)如表所示:
资源 消耗量 产品 | 甲产品(每吨) | 乙产品(每吨) | 资源限额(每天) |
煤() | 9 | 4 | 360 |
电力() | 4 | 5 | 200 |
劳力(个) | 3 | 10 | 300 |
利润(万元) | 7 | 12 |
问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?
【题目】全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标,根据相关报道提供的全网传播2017年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.
组号 | 分组 | 频数 |
1 | 2 | |
2 | 8 | |
3 | 7 | |
4 | 3 |
(1)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数;
(2)现从融合指数在和内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在内的概率.