题目内容
【题目】已知数列是公差不为0的等差数列,,数列是等比数列,且,,,数列的前n项和为.
(1)求数列的通项公式;
(2)设,求的前n项和;
(3)若对恒成立,求的最小值.
【答案】(1);(2);(3)
【解析】
(1)设等差数列的公差为,等比数列的公比为,根据,,,列方程组解方程组可得;
(2)分和讨论,求;
(3)令,由单调性可得,由题意可得,易得的最小值.
解:(1)设等差数列的公差为,等比数列的公比为,
则由题意可得,解得或,
∵数列是公差不为0的等差数列,,
∴数列的通项公式;
(2)由(1)知,
当时,,
当时,
,
综合得:
(3)由(1)可知,
令,,∴随着的增大而增大,
当为奇数时,在奇数集上单调递减,,
当为偶数时,在偶数集上单调递增,,
,
对恒成立,
,
∴的最小值为.
练习册系列答案
相关题目
【题目】2020年春季,某出租汽车公司决定更换一批新的小汽车以代替原来报废的出租车,现有两款车型,根据以往这两种出租车车型的数据,得到两款出租车车型使用寿命频数表如下:
使用寿命年数 | 5年 | 6年 | 7年 | 8年 | 总计 |
型出租车(辆) | 10 | 20 | 45 | 25 | 100 |
型出租车(辆) | 15 | 35 | 40 | 10 | 100 |
(1)填写下表,并判断是否有的把握认为出租车的使用寿命年数与汽车车型有关?
使用寿命不高于年 | 使用寿命不低于年 | 总计 | |
型 | |||
型 | |||
总计 |
(2)司机师傅小李准备在一辆开了年的型车和一辆开了年的型车中选择,为了尽最大可能实现年内(含年)不换车,试通过计算说明,他应如何选择.
附:,.
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |