题目内容
定义在R上的函数f(x)满足f(4)=1.f'(x)为f(x)的导函数,已知函数y=f'(x)的图象如右图所示.若两正数a,b满足f(2a+b)<1,则的取值范围是( )A.
B.()
C.(,3)
D.(3,+∞)
【答案】分析:先根据导函数的图象判断原函数的单调性,从而确定a、b的范围得到答案.
解答:解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增
∵两正数a,b满足f(2a+b)<1,
∴0<2a+b<4,∴b<4-2a,0<a<2
∴<<<-2+
∵0<a<2,∴<-2+<3,
故选C.
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
解答:解:由图可知,当x>0时,导函数f'(x)>0,原函数单调递增
∵两正数a,b满足f(2a+b)<1,
∴0<2a+b<4,∴b<4-2a,0<a<2
∴<<<-2+
∵0<a<2,∴<-2+<3,
故选C.
点评:本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.
练习册系列答案
相关题目