题目内容

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),将曲线经过伸缩变换后得到曲线.在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为

1)说明曲线是哪一种曲线,并将曲线的方程化为极坐标方程;

2)已知点是曲线上的任意一点,求点到直线的距离的最大值和最小值.

【答案】(1)为圆心在原点,半径为2的圆 (2)取到最小值为最大值为

【解析】试题分析:1利用三角恒等式消元法消去参数可得曲线的普通方程,再利用放缩公式可得曲线方程,从而可判定是哪一种曲线,利用极坐标护互化公式可得的方程化为极坐标方程;2利用的参数方程设出点的坐标,利用点到直线距离公式辅助角公式及三角函数的有界性可得结果.

试题解析:(1因为曲线的参数方程为为参数),

因为,则曲线的参数方程

所以的普通方程为

所以为圆心在原点,半径为2的圆.

所以的极坐标方程为

2)解法:直线的普通方程为

曲线上的点到直线的距离

时, 取到最小值为

时, 取到最大值为

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网