题目内容

14.已知sin(α+β)=$\frac{1}{2}$,sin(α-β)=$\frac{1}{3}$,那么log${\;}_{\sqrt{5}}$$\frac{tanα}{tanβ}$=2.

分析 由和差角公式和整体思想以及同角三角函数的基本关系易得$\frac{tanα}{tanβ}$,再由对数的知识可得.

解答 解:∵sin(α+β)=$\frac{1}{2}$,sin(α-β)=$\frac{1}{3}$,
∴sinαcosβ+cosαsinβ=$\frac{1}{2}$,sinαcosβ-cosαsinβ=$\frac{1}{3}$,
联立可解得sinαcosβ=$\frac{5}{12}$,cosαsinβ=$\frac{1}{12}$,
∴$\frac{tanα}{tanβ}$=$\frac{sinαcosβ}{cosαsinβ}$=5,∴log${\;}_{\sqrt{5}}$$\frac{tanα}{tanβ}$=2
故答案为:2.

点评 本题考查两角和与差的三角函数公式,涉及整体思想和对数的运算,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网