题目内容

【题目】已知A,B是抛物线x2=2pyp>0)上的两个动点,O为坐标原点,非零向量满足

(1)求证:直线AB经过一定点;

(2)当AB的中点到直线y-2x=0的距离的最小值为时,求p的值.

【答案】(1);(2)2

【解析】试题分析:(1)欲证直线经过定点,只需找到直线方程,在验证不管参数为何值都过某一定点即可,可根据判断直线OA,OB垂直,设AB方程,根据OA,OB垂直消去一些参数,再进行判断.(2)设AB中点的坐标根据OA,OB垂直,可得AB中点坐标满足的关系式,再用点到直线的距离公式求AB的中点到直线y-2x=0的距离的,求出最小值,让其等于解参数p即可.

试题解析:

(1)∵,∴OA⊥OB.设A,B两点的坐标为(x1,y1),(x2,y2)则x12=2py1,x22=2py2,经过A,B两点的直线方程为(x2-x1)(y-y1)=(y2-y1)(x-x1),由,得,∵.令x=0,得,∴(*)

∵OA⊥OB,∴x1x2+y1y2=0,从而

∵x1x2≠0(否则,有一个为零向量),∴x1x2=-4p2.代入(*),得y=2p,

∴AB始终经过定点(0,2p).

(2)设AB中点的坐标为(x,y),则x1+x2=2x,y1+y2=2y,∴x12+x22=2py1+2py2=2p(y1+y2).

又∵x12+x22=(x1+x22-2x1x2=(x1+x22+8p2,∴4x2+8p2=4py,

.…①,AB的中点到直线y-2x=0的距离

将①代入,得

因为d的最小值为,∴,∴p=2.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网