题目内容

【题目】函数f(x)=Asin(x+φ)(A>0,0<<4,|φ|< )过点(0, ),且当x= 时,函数f(x)取得最大值1.
(1)将函数f(x)的图象向右平移 个单位得到函数g(x),求函数g(x)的表达式;
(2)在(1)的条件下,函数h(x)=f(x)+g(x)+2cos2x﹣1,如果对于x1 , x2∈R,都有h(x1)≤h(x)≤h(x2),求|x1﹣x2|的最小值.

【答案】
(1)解:由题意A=1,将点(0, )代入解得

再根据 ,结合0<<4,

所以=2,

将函数f(x)的图象向右平移 个单位得到函数 的图象


(2)解:函数h(x)=f(x)+g(x)+2cos2x﹣1=2sin(2x+ ),故函数的周期T=π.

对于x1,x2∈R,都有h(x1)≤h(x)≤h(x2),故|x1﹣x2|的最小值为


【解析】(1)由函数的最值求出A,由特殊点的坐标求出φ的值,由五点法作图求出ω,可得f(x)的解析式,再根据y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式.(2)由条件利用正弦函数的最值以及周期性,求得|x1﹣x2|的最小值.
【考点精析】掌握函数y=Asin(ωx+φ)的图象变换是解答本题的根本,需要知道图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

【题目】已知函数.

(1)判断并证明函数的奇偶性;

(2)判断当时函数的单调性,并用定义证明;

(3)若定义域为,解不等式.

【答案】(1)奇函数(2)增函数(3)

【解析】试题分析:1)判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。2)利函数单调性定义证明单调性,按假设,作差,化简,判断,下结论五个步骤。(3)由(1)(2)奇函数在(-11)为单调函数,

原不等式变形为f(2x-1)<-f(x),f(2x-1)<f(-x),再由函数的单调性及定义(-1,1)求解得x范围。

试题解析:1)函数为奇函数.证明如下:

定义域为

为奇函数

2)函数在(-11)为单调函数.证明如下:

任取,则

在(-11)上为增函数

3由(1)、(2)可得

解得:

所以,原不等式的解集为

点睛

(1)奇偶性:判断与证明函数的奇偶性,首先要确定函数的定义域是否关于原点对称,再判断f(-x)f(x)的关系,如果对定义域上的任意x,都满足f(-x)=f(x)就是偶函数,如果f(-x)=-f(x)就是奇函数,否则是非奇非偶函数。

(2)单调性:利函数单调性定义证明单调性,按假设,作差,化简,定号,下结论五个步骤。

型】解答
束】
22

【题目】已知函数.

(1)若的定义域和值域均是,求实数的值;

(2)若在区间上是减函数,且对任意的,都有,求实数的取值范围;

(3)若,且对任意的,都存在,使得成立,求实数的取值范围.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网