题目内容
【题目】甲、乙、丙三人参加了一家公司的招聘面试,面试合格者可正式签约,甲表示只要面试合格就签约.乙、丙则约定:两人面试都合格就一同签约,否则两人都不签约.设甲、乙、丙面试合格的概率分别是 , , ,且面试是否合格互不影响.求:
(1)至少有1人面试合格的概率;
(2)签约人数ξ的分布列和数学期望.
【答案】
(1)解:用A,B,C分别表示事件甲、乙、丙面试合格,
由题意知A,B,C相互独立,且P(A)=P(B)= ,P(C)= ;
至少有1人面试合格的概率是
1﹣P( )=1﹣P( )P( )P( )
=1﹣ ×
=
(2)解:ξ的可能取值为0,1,2,3;
P(ξ=0)=P( )+P( C)+P( )
=P( )P(B)P( )+P( )P( )P(C)+P( )P( )P( )
= × + × + ×
= ,
P(ξ=1)=P(A C)+P(AB )+P(A )
=P(A)P( )P(C)+P(A)P(B)P( )+P(A)P( )P( )
= × + × + ×
= ,
P(ξ=2)=P( BC)
=P( )P(B)P(C)
= ×
= ,
P(ξ=3)=P(ABC)
=P(A)P(B)P(C)
= ×
= ;
所以ξ的分布列是
ξ | 0 | 1 | 2 | 3 |
P |
ξ的期望Eξ=0× +1× +2× +3× = .
【解析】(1)求出甲、乙、丙面试合格的概率,根据相互独立事件的概率,计算至少有1人面试合格的概率即可;(2)由ξ的可能取值,计算P(ξ),列出ξ的分布列,计算ξ的期望的值.
练习册系列答案
相关题目