题目内容
等边三角形ABC的边长为3,点D、E分别是边AB、AC上的点,且满足![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_ST/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_ST/images1.png)
(1)求证:A1D丄平面BCED;
(2)在线段BC上是否存在点P,使直线PA1与平面A1BD所成的角为60?若存在,求出PB的长;若不存在,请说明理由.
【答案】分析:(1)等边△ABC中,根据
得到AD=1且AE=2,由余弦定理算出DE=
,从而得到AD2+DE2=AE2,所以AD⊥DE.结合题意得平面A1DE⊥平面BCDE,利用面面垂直的性质定理,可证出A1D丄平面BCED;
(2)作PH⊥BD于点H,连接A1H、A1P,由A1D丄平面BCED得A1D丄PH,所以PH⊥平面A1BD,可得∠PA1H是直线PA1与平面A1BD所成的角,即∠PA1H=60°.设PB=x(0≤x≤3),分别在Rt△BA1H、Rt△PA1H和Rt△DA1H中利用三角函数定义和勾股定理,建立等量关系得12+(2-
x)2=(
x)2,解之得x=
,从而得到在BC上存在点P且当PB=
时,直线PA1与平面A1BD所成的角为60°.
解答:解:(1)∵正△ABC的边长为3,且
=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/images9.png)
∴AD=1,AE=2,
△ADE中,∠DAE=60°,由余弦定理,得
DE=
=![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/10.png)
∵AD2+DE2=4=AE2,∴AD⊥DE.
折叠后,仍有A1D⊥DE
∵二面角A1-DE-B成直二面角,∴平面A1DE⊥平面BCDE
又∵平面A1DE∩平面BCDE=DE,A1D?平面A1DE,A1D⊥DE
∴A1D丄平面BCED;
(2)假设在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60°
如图,作PH⊥BD于点H,连接A1H、A1P
由(1)得A1D丄平面BCED,而PH?平面BCED
所以A1D丄PH![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/images12.png)
∵A1D、BD是平面A1BD内的相交直线,
∴PH⊥平面A1BD
由此可得∠PA1H是直线PA1与平面A1BD所成的角,即∠PA1H=60°
设PB=x(0≤x≤3),则BH=PBcos60°=
,PH=PBsin60°=
x
在Rt△PA1H中,∠PA1H=60°,所以A1H=
,
在Rt△DA1H中,A1D=1,DH=2-
x
由A1D2+DH2=A1H2,得12+(2-
x)2=(
x)2
解之得x=
,满足0≤x≤3符合题意
所以在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60°,此时PB=
.
点评:本题给出平面翻折问题,求证直线与平面垂直并探索了直线与平面所成角的问题,着重考查了线面垂直、面面垂直的判定与性质和直线与平面所成角的求法等知识,属于中档题.
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/0.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/1.png)
(2)作PH⊥BD于点H,连接A1H、A1P,由A1D丄平面BCED得A1D丄PH,所以PH⊥平面A1BD,可得∠PA1H是直线PA1与平面A1BD所成的角,即∠PA1H=60°.设PB=x(0≤x≤3),分别在Rt△BA1H、Rt△PA1H和Rt△DA1H中利用三角函数定义和勾股定理,建立等量关系得12+(2-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/3.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/4.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/5.png)
解答:解:(1)∵正△ABC的边长为3,且
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/6.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/7.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/8.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/images9.png)
∴AD=1,AE=2,
△ADE中,∠DAE=60°,由余弦定理,得
DE=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/9.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/10.png)
∵AD2+DE2=4=AE2,∴AD⊥DE.
折叠后,仍有A1D⊥DE
∵二面角A1-DE-B成直二面角,∴平面A1DE⊥平面BCDE
又∵平面A1DE∩平面BCDE=DE,A1D?平面A1DE,A1D⊥DE
∴A1D丄平面BCED;
(2)假设在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60°
如图,作PH⊥BD于点H,连接A1H、A1P
由(1)得A1D丄平面BCED,而PH?平面BCED
所以A1D丄PH
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/images12.png)
∵A1D、BD是平面A1BD内的相交直线,
∴PH⊥平面A1BD
由此可得∠PA1H是直线PA1与平面A1BD所成的角,即∠PA1H=60°
设PB=x(0≤x≤3),则BH=PBcos60°=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/12.png)
在Rt△PA1H中,∠PA1H=60°,所以A1H=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/13.png)
在Rt△DA1H中,A1D=1,DH=2-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/14.png)
由A1D2+DH2=A1H2,得12+(2-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/15.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/16.png)
解之得x=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/17.png)
所以在线段BC上存在点P,使直线PA1与平面A1BD所成的角为60°,此时PB=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131025124206058588298/SYS201310251242060585882017_DA/18.png)
点评:本题给出平面翻折问题,求证直线与平面垂直并探索了直线与平面所成角的问题,着重考查了线面垂直、面面垂直的判定与性质和直线与平面所成角的求法等知识,属于中档题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目