题目内容
已知数列{an}满足a1=a,a2=2,Sn是数列的前n项和,且Sn=n(an+3a1) |
2 |
(1)求实数a的值;
(2)求数列{an}的通项公式;
(3)对于数列{bn},若存在常数M,使bn<M(n∈N*),且
lim |
n→∞ |
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |
分析:(1)由题设条件可知S1=
,a1=2a1,即a1=0.由此能够解得a=0.
(2)由题意可知,Sn=
,2Sn=nan(n∈N*).所以2Sn-1=(n-1)an-1(n≥2).由此可知数列{an}的通项公式an=2(n-1)(n∈N*).
(3)由题设条件知Sn=
=n(n-1)(n∈N*).由此可知Tn=t1+t2+…+tn=3-
-
<3(n∈N*).从而求得数列{Tn}的上渐近值是3.
a1+3a1 |
2 |
(2)由题意可知,Sn=
nan |
2 |
(3)由题设条件知Sn=
nan |
2 |
2 |
n+1 |
2 |
n+2 |
解答:解:(1)∵a1=a,a2=2,Sn=
(n∈N*),∴S1=
,a1=2a1,即a1=0.(2分)∴a=0.(3分)
(2)由(1)可知,Sn=
,2Sn=nan(n∈N*).
∴2Sn-1=(n-1)an-1(n≥2).
∴2(Sn-Sn-1)=nan-(n-1)an-1,2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1.(5分)
∴
=
(n≥3,n∈N*).(6分)
因此,
=
═
,an=2(n-1)(n≥2).(8分)
又a1=0,∴数列{an}的通项公式an=2(n-1)(n∈N*).(10分)
(3)由(2)有,Sn=
=n(n-1)(n∈N*).于是,tn=
+
-2
=
+
-2
=
-
(n∈N*).(12分)
∴Tn=t1+t2+…+tn
=(
-
)+(
-
)+(
-
)++(
-
)
=3-
-
<3(n∈N*).(14分)
又
Tn=
(3-
-
)=3,
∴数列{Tn}的上渐近值是3.(16分)
n(an+3a1) |
2 |
a1+3a1 |
2 |
(2)由(1)可知,Sn=
nan |
2 |
∴2Sn-1=(n-1)an-1(n≥2).
∴2(Sn-Sn-1)=nan-(n-1)an-1,2an=nan-(n-1)an-1,(n-2)an=(n-1)an-1.(5分)
∴
an |
n-1 |
an-1 |
n-2 |
因此,
an |
n-1 |
an-1 |
n-2 |
a2 |
1 |
又a1=0,∴数列{an}的通项公式an=2(n-1)(n∈N*).(10分)
(3)由(2)有,Sn=
nan |
2 |
Sn+2 |
Sn+1 |
Sn+1 |
Sn+2 |
=
(n+2)(n+1) |
(n+1)n |
(n+1)n |
(n+2)(n+1) |
=
2 |
n |
2 |
n+2 |
∴Tn=t1+t2+…+tn
=(
2 |
1 |
2 |
3 |
2 |
2 |
2 |
4 |
2 |
3 |
2 |
5 |
2 |
n |
2 |
n+2 |
=3-
2 |
n+1 |
2 |
n+2 |
又
lim |
n→∞ |
lim |
n→∞ |
2 |
n+1 |
2 |
n+2 |
∴数列{Tn}的上渐近值是3.(16分)
点评:本题考查数列的综合运用,解题时要注意计算能力的培养.
练习册系列答案
相关题目