题目内容
【题目】已知线段上有个确定的点(包括端点与).现对这些点进行往返标数(从…进行标数,遇到同方向点不够数时就“调头”往回数).如图:在点上标,称为点,然后从点开始数到第二个数,标上,称为点,再从点开始数到第三个数,标上,称为点(标上数的点称为点),……,这样一直继续下去,直到,,,…,都被标记到点上,则点上的所有标记的数中,最小的是_______.
【答案】
【解析】
将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,则,令,即可得.
依照题意知,标有2的是1+2,标有3的是1+2+3,……,标有2019的是1+2+3+……+2019,将将线段上的点考虑为一圆周,所以共有16个位置,利用规则,可知标记2019的是,2039190除以16的余数为6,即线段的第6个点标为2019,,令,,解得
,故点上的所有标记的数中,最小的是3.
【题目】“ALS冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.
(1)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?
(2)为了解冰桶挑战赛与受邀请的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下列联表:
接受挑战 | 不接受挑战 | 合计 | |
男性 | 45 | 15 | 60 |
女性 | 25 | 15 | 40 |
合计 | 70 | 30 | 100 |
根据表中数据,能否在犯错误的概率不超过0.1的前提下认为“冰桶挑战赛与受邀请者的性别有关”?
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【题目】爱心超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温单位:有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份每天的最高气温数据,得到下面的频数分布表:
最高气温 | ||||||
天数 | 2 | 16 | 36 | 25 | 7 | 4 |
(1)求六月份这种酸奶一天的需求量不超过300瓶的频率;
(2)当六月份有一天这种酸奶的进货量为450瓶时,求这一天销售这种酸奶的平均利润(单位:元)