题目内容
7.平面上的向量$\overrightarrow{MA}$与$\overrightarrow{MB}$满足|$\overrightarrow{MA}$|2+|$\overrightarrow{MB}$|=4,且$\overrightarrow{MA}•\overrightarrow{MB}$=0,若点C满足$\overrightarrow{MC}$=$\frac{1}{3}$$\overrightarrow{MA}$+$\frac{2}{3}$$\overrightarrow{MB}$,则|$\overrightarrow{MC}$|的最小值为( )A. | 1 | B. | $\frac{\sqrt{7}}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{\sqrt{5}}{4}$ |
分析 由已知不妨设A(x,0),B(0,y)(x,y≥0).可得x2+y=4.$\overrightarrow{MC}$=$\frac{1}{3}$$\overrightarrow{MA}$+$\frac{2}{3}$$\overrightarrow{MB}$=$(\frac{1}{3}x,\frac{2}{3}y)$,可得|$\overrightarrow{MC}$|=$\sqrt{\frac{1}{9}{x}^{2}+\frac{4}{9}{y}^{2}}$=$\frac{1}{3}\sqrt{4(y-\frac{1}{8})^{2}+\frac{63}{16}}$,利用二次函数的单调性即可得出.
解答 解:∵平面上的向量$\overrightarrow{MA}$与$\overrightarrow{MB}$满足|MA|2+|MB|=4,且$\overrightarrow{MA}•\overrightarrow{MB}$=0,
不妨设A(x,0),B(0,y)(x,y≥0).则x2+y=4.
∵$\overrightarrow{MC}$=$\frac{1}{3}$$\overrightarrow{MA}$+$\frac{2}{3}$$\overrightarrow{MB}$=$\frac{1}{3}(x,0)$+$\frac{2}{3}(0,y)$=$(\frac{1}{3}x,\frac{2}{3}y)$,
∴|$\overrightarrow{MC}$|=$\sqrt{\frac{1}{9}{x}^{2}+\frac{4}{9}{y}^{2}}$=$\sqrt{\frac{4}{9}{y}^{2}+\frac{1}{9}(4-y)}$=$\frac{1}{3}\sqrt{4(y-\frac{1}{8})^{2}+\frac{63}{16}}$$≥\frac{\sqrt{7}}{4}$,当且仅当y=$\frac{1}{8}$,x=$\frac{\sqrt{62}}{4}$时取等号.
故选:B.
点评 本题考查了向量的数量积运算性质、向量垂直与数量积的关系、二次函数的单调性,考查了推理能力与计算能力,属于中档题.
A. | -1 | B. | 1 | C. | 2 | D. | 2006 |
A. | {a|a<2} | B. | {a|a≤2} | C. | {a|a≥2} | D. | {a|a>2} |