题目内容
【题目】甲、乙两名射击运动员在进行射击训练,已知甲命中10环,9环,8环的概率分别是,,,乙命中10环,9环,8环的概率分别是,,,任意两次射击相互独立.
(1)求甲运动员两次射击命中环数之和恰好为18的概率;
(2)现在甲、乙两人进行射击比赛,每一轮比赛两人各射击1次,环数高于对方为胜,环数低于对方为负,环数相等为平局,规定连续胜利两轮的选手为最终的胜者,比赛结束,求恰好进行3轮射击后比赛结束的概率
【答案】(1)(2)
【解析】
(1)甲运动员两次射击命中环数之和恰好为18包含“第一次10环和第二次8环”,“第一次8环第二次10环”,“第一次9环和第二次9环”这三种情况,分别求三种情况概率再求和;
(2)求恰好进行3轮射击后比赛结束的概率,先确定甲胜利,平局,失败的概率,恰好进行3轮射击后比赛结束情形包括两种:①当甲获得最终胜利结束3轮比赛时,由第2轮、第3轮甲连续胜利,第一轮甲没有获得胜利,算出其概率P1;②当乙获得最终胜利结束3轮比赛时,则第2轮、第3轮乙连续胜利,第1轮乙没有获得胜利,其概率P2,两情形概率之和即为所求.
(1)记X表示甲运动员两次射击命中环数之和,
则X=18包含“第一次10环和第二次8环”,“第一次8环第二次10环”,“第一次9环和第二次9环”这三种情况,
∴甲运动员两次射击命中环数之和恰好为18的概率为:
P.
(2)记Ai表示甲在第i轮胜利,Bi表示甲在第i轮平局,i表示甲在第i轮失败,
∴P(Ai),P(Bi),P(i),
①当甲获得最终胜利结束3轮比赛时,由第2轮、第3轮甲连续胜利,第一轮甲没有获得胜利,
其概率P1,
②当乙获得最终胜利结束3轮比赛时,则第2轮、第3轮乙连续胜利,第1轮乙没有获得胜利,
其概率P2,
∴经过3轮比赛结束的概率P.