题目内容
19.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥3}\\{x-y≥-1}\\{2x-y≤3}\end{array}\right.$,则目标函数z=$\frac{y+1}{x+1}$的最大值为( )A. | 2 | B. | $\frac{3}{2}$ | C. | $\frac{6}{5}$ | D. | $\frac{2}{3}$ |
分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
z=$\frac{y+1}{x+1}$的几何意义为区域内的动点(x,y)到定点D(-1,-1)的斜率,
由图象知,AD的斜率最大,
由$\left\{\begin{array}{l}{x+y=3}\\{x-y=-1}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即A(1,2),
此时AD的斜率z=$\frac{2+1}{1+1}$=$\frac{3}{2}$,
即z的最大值为$\frac{3}{2}$.
故选:B.
点评 本题主要考查线性规划以及直线斜率的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.
练习册系列答案
相关题目
10.以下个数有可能是五进制数的是( )
A. | 15 | B. | 106 | C. | 731 | D. | 21340 |
14.过点A(0,2),B(-2,2),且圆心在直线x-y-2=0上的圆的方程是( )
A. | (x-1)2+(y+1)2=26 | B. | (x+1)2+(y+3)2=26 | C. | (x+2)2+(y+4)2=26 | D. | (x-2)2+y2=26 |
8.某企业员工共500人参加“学雷锋”志愿活动,按年龄分组:第一组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(1)表是年龄的频数分布表,求正整数a,b的值;
(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;
(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.
区间 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50] |
人数 | 50 | 50 | a | 150 | b |
(2)根据频率分布直方图,估算该企业员工的平均年龄及年龄的中位数;
(3)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.