题目内容
14.若复数$\frac{m+i}{2-i}$为纯虚数,则实数m=( )A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
分析 利用复数的除法运算法则化简复数为a+bi的形式,利用复数是纯虚数求解m即可.
解答 解:复数$\frac{m+i}{2-i}$=$\frac{(m+i)(2+i)}{(2-i)(2+i)}$=$\frac{2m-1+(m+2)i}{5}$,
复数$\frac{m+i}{2-i}$为纯虚数,可得2m-1=0,
解得m=$\frac{1}{2}$.
故选:C.
点评 本题考查复数的代数形式的混合运算,复数的基本概念,考查计算能力.
练习册系列答案
相关题目
9.已知某高级中学高三学生有2000名,在第一次模拟考试中数学成绩ξ服从正态分布N(120,σ2),已知P(100<?<120)=0.45.若学校教研室欲按分层抽样的方式从中抽出100份试卷进行分析研究,则应从140分以上的试卷中抽( )
A. | 4份 | B. | 5份 | C. | 8份 | D. | 10份 |
19.直线l过抛物线C:y2=4x的焦点,且与抛物线C交于A、B两点,过点A、B分别向抛物线的准线作垂线,垂足分别为P、Q,则四边形APQB的面积的最小值为( )
A. | 6 | B. | 8 | C. | $8\sqrt{2}$ | D. | $10\sqrt{2}$ |
6.某城市随机监测一年内100天的空气质量PM2.5的数据API,结果统计如下:
(1)若将API值低于150的天气视为“好天”,并将频率视为概率,根据上述表格,预测今年高考6月7日、8日两天连续出现“好天”的概率;
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率.
API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,+∞) |
天数 | 6 | 12 | 22 | 30 | 14 | 16 |
(2)API值对部分生产企业有着重大的影响,假设某企业的日利润f(x)与API值x的函数关系为:f(x)=$\left\{\begin{array}{l}40(x≤150)\\ 15(x>150)\end{array}$(单位;万元),利用分层抽样的方式从监测的100天中选出5天,再从这5天中任取3天计算企业利润之和,求利润之和小于80万元的概率.