题目内容
【题目】如图,椭圆的左、右焦点分别为,,点在椭圆上.
(1)求椭圆的方程;
(2)若A,B是椭圆上位于x轴上方的两点,直线与直线交于点P,,求直线的斜率.
【答案】(1)(2)1
【解析】
(1)根据题意得到,将点代入椭圆方程,结合,得到关于的方程组,解出,得到答案;(2)根据得到,从而得到,根据对称性得到与椭圆的另一个交点的坐标与的关系,从而得到,得到,再结合直线与椭圆联立后得到的,,从而得到关于的斜率的方程,得到答案.
解(1)因为椭圆的左、右焦点分别为,,
所以,
把点代入椭圆方程,得到
而在椭圆中,
解得,
所以所求的椭圆的标准方程为:.
(2)设交椭圆于另一点M,
因为,,
所以,
所以,所以,
根据对称性可知点和点关于原点对称,
所以
所以得到,
设,
所以,
设直线,代入椭圆方程得
,
,,
所以有
所以,
解得,
由,可知,
故.
所以的斜率为1.
练习册系列答案
相关题目
【题目】共享单车是指由企业在校园、公交站点、商业区、公共服务区等场所提供的自行车单车共享服务,由于其依托“互联网+”,符合“低碳出行”的理念,已越来越多地引起了人们的关注.某部门为了对该城市共享单车加强监管,随机选取了50人就该城市共享单车的推行情况进行问卷调査,并将问卷中的这50人根据其满意度评分值(百分制)按照分成5组,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题:
频率分布表
组别 | 分组 | 频数 | 频率 |
第1组 | 8 | 0.16 | |
第2组 | ▆ | ||
第3组 | 20 | 0.40 | |
第4组 | ▆ | 0.08 | |
第5组 | 2 | ||
合计 | ▆ | ▆ |
(1)求的值;
(2)若在满意度评分值为的人中随机抽取2人进行座谈,求所抽取的2人中至少一人来自第5组的概率.