题目内容
【题目】已知f(x)是偶函数,且f(x+ )=f( ﹣x),当﹣ ≤x≤0时,f(x)=( )x﹣1,记an=f( ),n∈N+ , 则a2046的值为( )
A.1﹣
B.1﹣
C.﹣1
D.﹣1
【答案】C
【解析】解:∵f(x)是偶函数,且f(x+ )=f( ﹣x),
∴f(x+ )=f( ﹣x)=f(x﹣ ),
即f(x+1)=f(x),
即函数f(x)是周期为1的周期函数,
则a2046=f( )=f(1023+ )=f( )=f(﹣ ),
∵当﹣ ≤x≤0时,f(x)=( )x﹣1,
∴f(﹣ )= ﹣1= ﹣1= ﹣1,
故a2046=f(﹣ )= ﹣1,
故选:C
【考点精析】掌握函数奇偶性的性质是解答本题的根本,需要知道在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.
【题目】某公司为感谢全体员工的辛勤劳动,决定在年终答谢会上,通过摸球方式对全公司1000位员工进行现金抽奖。规定:每位员工从装有4个相同质地球的袋子中一次性随机摸出2个球,这4个球上分别标有数字、、、,摸出来的两个球上的数字之和为该员工所获的奖励额(单位:元)。公司拟定了以下三个数字方案:
方案 | ||||
一 | 100 | 100 | 100 | 500 |
二 | 100 | 100 | 500 | 500 |
三 | 200 | 200 | 400 | 400 |
(Ⅰ)如果采取方案一,求的概率;
(Ⅱ)分别计算方案二、方案三的平均数和方差,如果要求员工所获的奖励额相对均衡,方案二和方案三选择哪个更好?
(Ⅲ)在投票选择方案二还是方案三时,公司按性别分层抽取100名员工进行统计,得到如下不完整的列联表。请将该表补充完整,并判断能否有90%的把握认为“选择方案二或方案三与性别有关”?
方案二 | 方案三 | 合计 | |
男性 | 12 | ||
女性 | 40 | ||
合计 | 82 | 100 |
附:
0.15 | 0.10 | 0.05 | |
2.072 | 2.706 | 3.841 |