题目内容
【题目】已知向量 , ,函数 .
(1)求函数f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角, ,c=1,且f(A)=1,求△ABC的面积S.
【答案】
(1)解: = =
=
= =sin(2x﹣ ),
由 (k∈z),
函数f(x)的单调递增区间为 (k∈z).
(2)解: ,
因为 , ,所以. , ,
又a2=b2+c2﹣2bccosA,则b=2,
从而
【解析】(1)利用向量的数量积的运算,以及两角和二倍角公式化简函数的表达式,通过正弦函数的单调增区间求解即可.(2)利用(1)的结果,推出A的大小,然后利用余弦定理求出b,利用三角形的面积公式求解即可.
【题目】在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式:b= , = b ,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学y成绩关于物理成绩x的线性回归方程 = x+ (b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
【题目】某商场为一种跃进商品进行合理定价,将该商品按事先拟定的价格进行试销,得到如下数据:
单位(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)按照上述数据,求四归直线方程,其中,;
(2)预计在今后的销售中,销量与单位仍然服从(Ⅰ)中的关系,若该商品的成本是每件7.5元,为使商场获得最大利润,该商品的单价应定为多少元?(利润=销售收入﹣成本)