题目内容
在等比数列{an}中,已知a2011=8a2008,则公比q=________.
2
分析:在等比数列{an}中,已知a2011=8a2008,而由等比数列的定义可得 a2011=q3a2008,故有q3=8,由此解得q的值.
解答:在等比数列{an}中,已知a2011=8a2008,而由等比数列的定义可得 a2011=q3a2008,
故有q3=8,解得q=2,
故答案为 2.
点评:本题主要考查等比数列的定义和性质,利用a2011=q3a2008,是解题的关键,属于中档题.
分析:在等比数列{an}中,已知a2011=8a2008,而由等比数列的定义可得 a2011=q3a2008,故有q3=8,由此解得q的值.
解答:在等比数列{an}中,已知a2011=8a2008,而由等比数列的定义可得 a2011=q3a2008,
故有q3=8,解得q=2,
故答案为 2.
点评:本题主要考查等比数列的定义和性质,利用a2011=q3a2008,是解题的关键,属于中档题.
练习册系列答案
相关题目
在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=( )
| A、(2n-1)2 | ||
B、
| ||
| C、4n-1 | ||
D、
|