题目内容
【题目】二次函数f(x)的对称轴是x=-1,f(x)在R上的最小值是0,且f(1)=4.
(1)求函数f(x)的解析式;
(2)若g(x)=(λ-1)f(x-1)-λx-3在x∈[-1,1]上是增函数,求实数λ的取值范围.
【答案】(1);(2)或1<λ≤2
【解析】
(1)由已知可设f(x)=a(x+1)2,结婚f(a)=4可求a,进而可求f(x),(2)由(1)可求g(x),然后结合二次函数的性质,考虑开口方向及对称轴与区间[-1,1]的位置关系进行分类讨论可求.
(1)二次函数f(x)的对称轴是x=-1,f(x)在R上的最小值是0,
故可设f(x)=a(x+1)2,
∵f(-1)=4a=4
∴a=1,f(x)=(x+1)2
(2)∵g(x)=(λ-1)f(x-1)-λx-3=(λ-1)x2-λx-3,
①λ=1时,g(x)=-x-3在[-1,1]上是减函数,舍去,
②λ>1时,g(x)=(λ-1)x2-λx-3x∈[-1,1]上是增函数,
则,
解可得,1<λ≤2;
③λ<1时,g(x)=(λ-1)x2-λx-3x∈[-1,1]上是增函数,
则,
解可得,,
综上可得,或1<λ≤2
练习册系列答案
相关题目
【题目】下表是高三某位文科生连续5次月考的历史、政治的成绩,结果统计如下:
月份 | 9 | 10 | 11 | 12 | 1 |
历史(x分) | 79 | 81 | 83 | 85 | 87 |
政治(y分) | 77 | 79 | 79 | 82 | 83 |
(1)求该生5次月考历史成绩的平均分和政治成绩的方差
(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关,根据上表提供的数据,求两个变量x、y的线性回归方程 = x+
(附: = = , =y﹣ x)