题目内容
函数f(x)为偶函数,且f′(x)存在,则f′(多)=( )
A.1 | B.-1 | C.0 | D.-x |
因为f(x)为偶函数,则f(x)=f(-x),
所以f'(x)=f'(-x)(-1),
右边移到左边,得f'(x)+f'(-x)=0,
取x=0得:f'(0)+f'(0)=0
即f'(0)=0.
故选C.
所以f'(x)=f'(-x)(-1),
右边移到左边,得f'(x)+f'(-x)=0,
取x=0得:f'(0)+f'(0)=0
即f'(0)=0.
故选C.
练习册系列答案
相关题目