题目内容

【题目】已知函数f(x)=|x+m|+|2x﹣1|(m∈R).
(1)当m=﹣1时,求不等式f(x)≤2的解集;
(2)设关于x的不等式f(x)≤|2x+1|的解集为A,且[1,2]A,求实数m的取值范围.

【答案】
(1)解:当m=﹣1时,函数f(x)=|x﹣1|+|2x﹣1|,不等式f(x)≤2,即|x﹣1|+|2x﹣1|≤2,

故有 ①,或 ②,或 ③.

解①求得0≤x< ,解②求得 ≤x≤1,解③求得1<x≤

综上可得,不等式f(x)≤2的解集为{x|0≤x≤ }


(2)解:由题意可得,当x∈[1,2]时,关于x的不等式f(x)≤|2x+1|恒成立,

即|x+m|+|2x﹣1|≤|2x+1|恒成立,即|x+m|≤(2x+1)﹣(2x﹣1)=2 恒成立,

∴﹣2≤x+m≤2 恒成立,即﹣x﹣2≤m≤2﹣m 恒成立,∴﹣3≤m≤0,

即实数m的取值范围为[﹣3,0]


【解析】(1)当m=﹣1时,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.(2)由题意可得,当x∈[1,2]时,关于x的不等式f(x)≤|2x+1|恒成立,即﹣2≤x+m≤2 恒成立,即﹣x﹣2≤m≤2﹣m 恒成立,由此可得实数m的取值范围.
【考点精析】利用绝对值不等式的解法对题目进行判断即可得到答案,需要熟知含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网