题目内容
【题目】如图,在四棱锥中,底面,底面为平行四边形,,且,,是棱的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.
【答案】(1)证明见解析.(2).(3)存在,
【解析】
(1)连接交于点,连接,可证,从而得线面平行;
(2)由题意以为坐标原点,分别以所在直线为轴,轴,轴建立空间直角坐标系,可用向量法求出线面角;
(3)在(2)基础上,设,求出平面和平面((2)中已有)法向量,由法向量夹角与二面角的关系可求得.
(1)连接交于点,连接.
∵是平行四边形,∴是的中点.又是的中点,∴
又平面,平面,∴平面;
(2)以为坐标原点,分别以所在直线为轴,轴,轴建立如图所示的空间直角坐标系,则,,,,,.
设平面的法向量为.
∵,
∴即
不妨取,得
又.
设直线与平面所成的角为,
则,
即直线与平面所成角的正弦值为.
(3)假设在线段上(不含端点)存在一点,使得二面角的余弦值为.连接.设, 得.
设平面的法向量为.
∵,
∴即
不妨取,得
设二面角的平面角为,
则.
化简得,
解得,或.
∵二面角的余弦值为,
∴.
∴在线段上存在一点,且,使得二面角的余弦值为.
【题目】近年来,随着全球石油资源紧张、大气污染日益严重和电池技术的提高,电动汽车已被世界公认为21世纪汽车工业改造和发展的主要方向.为了降低对大气的污染和能源的消耗,某品牌汽车制造商研发了两款电动汽车车型和车型,并在黄金周期间同时投放市场.为了了解这两款车型在黄金周的销售情况,制造商随机调查了5家汽车店的销量(单位:台),得到下表:
店 | 甲 | 乙 | 丙 | 丁 | 戊 |
车型 | 6 | 6 | 13 | 8 | 11 |
车型 | 12 | 9 | 13 | 6 | 4 |
(1)若从甲、乙两家店销售出的电动汽车中分别各自随机抽取1台电动汽车作满意度调查,求抽取的2台电动汽车中至少有1台是车型的概率;
(2)现从这5家汽车店中任选3家举行促销活动,用表示其中车型销量超过车型销量的店的个数,求随机变量的分布列和数学期望.
【题目】某市场研究人员为了了解产业园引进的甲公司前期的经营状况,对该公司2018年连续六个月的利润进行了统计,并根据得到的数据绘制了相应的折线图,如图所示
(1)由折线图可以看出,可用线性回归模型拟合月利润(单位:百万元)与月份代码之间的关系,求关于的线性回归方程,并预测该公司2019年3月份的利润;
(2)甲公司新研制了一款产品,需要采购一批新型材料,现有,两种型号的新型材料可供选择,按规定每种新型材料最多可使用个月,但新材料的不稳定性会导致材料损坏的年限不相同,现对,两种型号的新型材料对应的产品各件进行科学模拟测试,得到两种新型材料使用寿命的频数统计如下表:
使用寿命 材料类型 | 个月 | 个月 | 个月 | 个月 | 总计 |
如果你是甲公司的负责人,你会选择采购哪款新型材料?
参考数据:,.参考公式:回归直线方程为,其中 .